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Double Integrals (Cartesian Coordinates)

When integrating over rectangles, we can apply Fubini’s Theorem for integrable functions:∫ b

a

∫ d

c

f(x, y)dydx =

∫ d

c

∫ b

a

f(x, y)dxdy

For general regions we can apply the following steps:

1. Sketch the region of integration.

2. Write the bounds of one variable in terms of constants, the other variable in terms of functions:

a ≤ x ≤ b and f(x) ≤ y ≤ g(x)

or

c ≤ y ≤ d and h(y) ≤ x ≤ k(y)

We can find the area over a region D, evaluate

A =

∫∫
D

1dA

where dA is an area element.

Polar Coordinates

Use polar coordinates whenever integrating over circular regions. Use the following change of
coordinates:

x = r cos θ y = r sin θ dA = rdrdθ

Observe x2 + y2 = r2.

Triple Integrals (Cartesian Coordinates)

To find the volume of a solid E, evaluate

V =

∫∫∫
E

1dV

where dV is a volume element.

For general regions we can apply the following steps:
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1. Sketch the region of integration.

2. Write the bounds of the first variable in terms of constants, the second variable in terms of
functions of the first variable, the third variable in terms of functions of the first and second
variables, for example

a ≤ x ≤ b, f(x) ≤ y ≤ g(x), h(x, y) ≤ z ≤ k(x, y).

Cylindrical Coordinates

Changing to cylindrical coordinates is most useful when integrating over parts of circular cylinders,
paraboloids, or flat cones (cone beneath a plane). Use the following change of coordinates:

x = r cos θ y = r sin θ z = z dV = rdzdrdθ

Observe x2 + y2 = r2.

Spherical Coordinates

Changing to spherical coordinates is most useful when integrating over parts of spheres or “rounded”
cones (cone inside a sphere). We introduce a third parameter φ, this is the azimuthal angle measured
from the positive z-axis to the negative z-axis.

x = ρ cos θ sinφ y = ρ sin θ sinφ z = ρ cosφ dV = ρ2 sinφdρdφdθ

Observe x2 + y2 + z2 = ρ2.

Change of Variables

Suppose that T is a C1 transformation whose Jacobian is nonzero and that maps a region S in the
uv-plane onto a region R in the xy-plane. Suppose that T is one-to-one, except perhaps on the
boundary of S. Then ∫∫

R

f(x, y)dA =

∫∫
S

f(x(u, v), y(u, v))|J |dudv

J is the Jacobian given by

J =

∣∣∣∣ ∂x∂u ∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣
Vector Fields

Let F = 〈F1, F2, F3〉, ∇ = 〈 ∂
∂x ,

∂
∂y ,

∂
∂z 〉. The divergence of F is given by

divF = ∇ · F =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z

2



The curl of F is given by

curl F = ∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣∣∣∣∣∣
A vector field F is called a conservative vector field if there exists a potential function f such
that ∇f = F. In 2 dimensions, F = 〈F1, F2〉 is conservative in a simply-connected region (i.e. no
holes) if

∂F2

∂y
=
∂F1

∂x
.

In 3 dimensions, F is conservative if curl F = 0.

Line Integrals

If f is a function defined along a smooth curve C defined by the parametrization r(t), a ≤ t ≤ b,
then ∫

C

f(x, y)ds =

∫ b

a

f(r(t))||r′(t)||dt

If F is a continuous vector field defined on a smooth curve C defined by the parametrization r(t),
a ≤ t ≤ b, then ∫

C

F · dr =

∫ b

a

F(r(t)) · r′(t)dt

This integral is also known as “work” or “circulation”. Another form of a line integral is the
following: ∫

C

Pdx+Qdy.

If given a graph of a vector field F and a path C, we can determine the sign of the line integral∫
C

F · dr:

• If the path travels against the vector field, then the integral is negative.

• If the path travels along the vector field, then the integral is positive.

• If the path is perpendicular to the path at all times, then the integral is zero.

Theorem (Fundamental Theorem of Line Integrals). Let C be a smooth curve given by the vector
function r(t), a ≤ t ≤ b. Let f be a differentiable function whose gradient vector ∇f is continuous
on C. Then ∫

C

∇f · dr = f(r(b))− f(r(a))

In other words: the line integral of a conservative vector field is independent of the path.
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Surface Integrals

If S is given by a parametrization r(u, v) and f is a scalar function defined on S, then∫∫
S

f(x, y, z)dS =

∫∫
D

f(r(u, v))||ru × rv||dudv

where D is the domain of the parameters u, v.

If F is a continuous vector field defined on an oriented surface S given by the parametrization
r(u, v), then ∫∫

S

F · dS =

∫∫
D

F · (ru × rv)dudv

where D is the domain of the parameters u, v.

Green’s Theorem

Theorem (Green’s Theorem). Let C be a positively-oriented, piecewise-smooth, simple closed curve
in the plane and let D be the region bounded by C. If P and Q have continuous partial derivatives
on an open region that contains D, then∫

C

Pdx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA

Note: We can write the left integral as
∫
C

F · dr where F = 〈P,Q〉.

Stokes’ Theorem

Stokes’ Theorem is the 3D version of Green’s Theorem.

Theorem (Stokes’ Theorem). Let S be an oriented piecewise smooth surface that is bounded by
a simple, closed, piecewise smooth boundary curve C with positive orientation. Let F be a vector
field whose components have continuous partial derivatives on an open region in R3 that contains
S. Then ∫

C

F · dr =

∫∫
S

curl(F) · dS.

Go left to right whenever you have a flat surface. Go right to left whenever the boundary curve is
easy to parametrize (e.g. a circle).

Divergence Theorem

Theorem (Divergence Theorem). Let E be a simple solid region and let S be the boundary surface
of E, given with positive (outward) orientation. Let F be a vector field whose component functions
have continuous partial derivatives on an opearn region that contains E. Then∫∫

S

F · dS =

∫∫∫
E

div(F)dV.
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