Practice Problems III

Written by Victoria Kala
vtkala@math.ucsb.edu
SH 6432u Office Hours: T 12:45 − 1:45pm
Last updated 7/24/2016

1. Solve $x' = \begin{pmatrix} 1 & -2 & 2 \\ -2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix} x$.

2. Solve $x' = \begin{pmatrix} 2 & 1 & 6 \\ 0 & 2 & 5 \\ 0 & 0 & 2 \end{pmatrix} x$.

3. Solve $x' = \begin{pmatrix} 4 & 0 & 1 \\ 0 & 6 & 0 \\ -4 & 0 & 4 \end{pmatrix} x$.

4. Consider the system $x' = \begin{pmatrix} \frac{1}{2} & 0 \\ 1 & -\frac{1}{2} \end{pmatrix} x$.
 (a) Find the general solution of the system.
 (b) Sketch a phase plane portrait and classify the system’s geometric character and stability behavior.
 (c) Solve the given initial value problem: $x' = \begin{pmatrix} \frac{1}{2} & 0 \\ 1 & -\frac{1}{2} \end{pmatrix} x$, $x(0) = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$.

5. Consider the system $x' = \begin{pmatrix} 2 & 4 \\ -1 & 6 \end{pmatrix} x$.
 (a) Find the general solution of the system.
 (b) Sketch a phase plane portrait and classify the system’s geometric character and stability behavior.
 (c) Solve the given initial value problem: $x' = \begin{pmatrix} 2 & 4 \\ -1 & 6 \end{pmatrix} x$, $x(0) = \begin{pmatrix} -1 \\ 6 \end{pmatrix}$.

6. Consider the system $x' = \begin{pmatrix} 6 & -1 \\ 5 & 4 \end{pmatrix} x$.
 (a) Find the general solution of the system.
 (b) Sketch a phase plane portrait and classify the system’s geometric character and stability behavior.
 (c) Solve the given initial value problem: $x' = \begin{pmatrix} 6 & -1 \\ 5 & 4 \end{pmatrix} x$, $x(0) = \begin{pmatrix} -2 \\ 8 \end{pmatrix}$.

7. Use the method of undetermined coefficients to solve the system $x' = \begin{pmatrix} 4 & \frac{1}{2} \\ 9 & 6 \end{pmatrix} x + \begin{pmatrix} -3 \\ 10 \end{pmatrix} e^t$.

8. Consider the autonomous system

 $x' = y - x^2 + 2$
 $y' = x^2 - xy$

 (a) Find the fixed points of the system.
 (b) Write the Jacobian J for the system above.
 (c) For each of your fixed points in part (a), evaluate the Jacobian J you found in part (b) and use it to classify the type and stability of that fixed point.