Math 31AL Practice Problems II

Written by Victoria Kala
vtkala@math.ucla.edu
Last updated November 21, 2019

1. Use chain rule to find the derivative of the following functions:

 (a) \(f(x) = \cos^2(x^3 + 1) \)

 (b) \(g(x) = \sqrt{x + \sin x} \)

2. Find the equation of the tangent line at the given point using implicit differentiation:

 \[2x^{1/2} + 4y^{-1/2} = xy, \quad (1, 4) \]

3. Let \(f(x) = 2x^2 - 8x + 7 \).

 (a) Find the local extrema of \(f(x) \).

 (b) Find the absolute extrema of \(f(x) \) on the interval \([0, 5]\).

 (c) Find the absolute extrema of \(f(x) \) on the interval \([-4, 1]\).

4. Find all critical points of \(f \) and use the First or Second Derivative Test decide if they are local minima or maxima:

 \(f(x) = \frac{x^2}{x + 1} \)

5. Let \(f(x) = x^6 - 9x^4 \).

 (a) Find the intercepts of \(f \).

 (b) Find the critical points of \(f \) and intervals where \(f \) is increasing or decreasing.

 (c) Find the intervals where \(f \) is concave up or concave down. Does \(f \) have any inflection points?

 (d) Sketch the graph of \(f(x) \).

6. Let \(f(x) = \frac{x - 2}{x - 3} \).

 (a) Find the intercepts of \(f \).

 (b) Find the vertical asymptotes of \(f \).

 (c) Find the horizontal asymptotes of \(f \).

 (d) Find the critical points of \(f \) and intervals where \(f \) is increasing or decreasing.

 (e) Find the intervals where \(f \) is concave up or concave down. Does \(f \) have any inflection points?

 (f) Sketch the graph of \(f(x) \).

7. Victoria wishes to enclose a rectangular garden of area 1000m\(^2\). One side will be enclosed with a brick wall costing $90/m, the other three sides will be enclosed with a metal fence costing $30/m. What dimensions of the garden minimize the total cost?
8. Let \(f(x) = 9 - x^2 \).

(a) Sketch the graph of \(f(x) \) on the interval \([0, 3]\).

(b) Sketch the rectangles corresponding to \(L_3 \), then calculate \(L_3 \). Is this an underestimate or overestimate of the area under \(f(x) \)?

(c) Sketch the rectangles corresponding to \(R_3 \), then calculate \(R_3 \). Is this an underestimate or overestimate of the area under \(f(x) \)?

(d) Calculate a formula for \(R_N \).

(e) By taking the limit as \(N \to \infty \) of your answer in (d), calculate the area under \(f(x) \) on the interval \([0, 3]\).