Tuesday, November 5

1. $f(x) = x^2 - 2x^2 + 2x - 12$
 - Increase "increasing" by finding the derivative
 - $f'(x) = 3x^2 - 4x + 2$
 - Try to find the critical points, i.e., $f'(x) = 0$: $3x^2 - 4x + 2 = 0$
 - Quadratic formula: $x = \frac{4 \pm \sqrt{(-4)^2 - 4(3)(2)}}{2(3)}$
 - $x = \frac{4 \pm \sqrt{16 - 24}}{6}$
 - No real solution, no critical points.
 - $f'(x)$ doesn't equal 0 -> either $f'(x) > 0$ (increasing) or $f'(x) < 0$ (decreasing).
 - Plug in random point: $f'(0) = 2 > 0$, so $f'(x) > 0$ all the time.

2. $f(x) = x^3 + 9x - 4$
 - Intermediate Value Theorem says if f continuous, then there is a c between a and b s.t. $f(c) = 0$.
 - $f(x)$ is a polynomial, so it is continuous.
 - Pick a number a s.t. $f(a) > 0$, e.g., $f(1) = 1^3 + 9(1) - 4 = 1 + 9 = 10 > 0$
 - Pick a number b s.t. $f(b) < 0$, e.g., $f(0) = 0^3 + 9(0) - 4 = -4 < 0$
 - So by IVT, there is a number c between 0 and 1 s.t. $f(c) = 0$ (i.e., a root).

3. Answers will vary.
 - ![Graph 1](attachment:graph1.png)
 - ![Graph 2](attachment:graph2.png)

4. $y = 3x^4 + 8x^2 - 6x^2 - 24x$
 - $y' = 12x^3 + 24x - 12x - 24$
 - Plug in 1, get $y' = 12(1)^3 + 24(1) - 12(1) - 24 = 12 + 24 - 12 - 24 = 0$
 - So $x = 1$ is a factor of $12x^3 + 24x - 12x - 24$
 - Use long division or synthetic division to factor:
 - $x - 1$ $| 12x^3 + 24x - 12x - 24$
 - $-(12x^3 - 12x)$
 - $\underline{36x^2 - 12x}$
 - $-(36x^2 - 36x)$
 - $24x - 24$
 - $-(24x - 24)$
 - 0
 - So $y' = (x-1)(12x^2 + 36x + 24)$
 - $y' = 12(x-1)(x^2 + 3x + 2)$
 - $y' = 12(x-1)(x+2)(x+1)$
 - Critical points occur when $y' = 12(x-1)(x+2)(x+1) = 0$
 - $x = 0, x = -2, x = -1$
Thursday, Nov 7

4. continued

\[
y = 12(x-1)(x+3)(x+1)
\]

Test points,
\[
y'(-3) = 12(-3-1)(-3+3)(-3+1) = 12(-4)(-1) = 48 < 0 \quad \text{dec}
\]
\[
y'(-1) = 12(-1-1)(-1+3)(-1+1) = 12(-2)(0) = 0 \quad \text{inc}
\]
\[
y'(0) = 12(0-1)(0+3)(0+1) = 12(-1)(3) = 0 < 0 \quad \text{dec}
\]
\[
y'(3) = 12(3-1)(3+3)(3+1) = 12(2)(4) > 0 \quad \text{inc}
\]

\[
y \quad \text{is increasing on (-2,-1) U (1,\infty)}
\]
\[
\text{decreasing on } (-\infty,-2) \text{ U (-1,1)}
\]

Local max occurs when inc -> dec so local max at \(X = -1 \)

Local min occurs when dec -> inc so local min at \(X = -2, 1 \)

Plug into original function:
\[
y = 2x^3 + 3x^2 - 6x - 24
\]
\[
y'(-3) = 3(9-6) + 2(-1) - 3 - 24 = 3 - 8 - 24 = -25
\]
\[
y'(-2) = 3(4-6) + 3(4-2) - 2(4) - 2(2) = 12 - 6 - 4 - 4 = 0
\]
\[
y'(0) = 3(0)^3 - 6(0)^2 - 24(0) = 3 + 0 - 24 = -21
\]
\[
y'(1) = 3(1)^3 + 3(1)^2 - 6(1) - 24(1) = 3 + 3 - 6 - 24 = -18
\]
\[
\begin{align*}
\text{(-1/3) local max} \\
\text{(-2,1) local min} \\
\text{(1,19) local min}
\end{align*}
\]

5. \(f(x) = x^3 + ax + b \)

\[
f'(x) = 3x^2 + a \quad \text{Want } f''(x) > 0 \quad \text{always,}
\]

so \(f'(x) = 3x^2 + a > 0 + a = a \). So we need \(a > 0 \) for \(f'' \) to be increasing. No restrictions on \(b \).

Given \(f''(x) = 30(x-\frac{3}{5}) \)

Find critical points: \(30(x-\frac{3}{5}) = 0 \)

\[
\begin{align*}
\text{X-3/5} & = 0 \\
X & = \frac{3}{5}
\end{align*}
\]

Test points: \(f'(\frac{3}{5}) = 20(\frac{3}{5}-\frac{3}{5}) = 20(\frac{6}{5}) = \frac{120}{5} = + + = + \\
(\frac{3}{5} - \frac{2}{5}) = 20(\frac{1}{5}) = \frac{20}{5} = + + = + \\
(\frac{4}{5} - \frac{3}{5}) = 20(\frac{1}{5}) = \frac{20}{5} = + + = + \\
(\frac{5}{5} - \frac{4}{5}) = 20(\frac{1}{5}) = \frac{20}{5} = + + = +
\]

Inc -> dec means local max, local max at \(x = \frac{3}{5} \)

Dec -> inc means local min, local min at \(x = \frac{3}{5} \)

Given \(f''(x) = 20(\frac{x}{5}) \)

Set numerator = 0: \(20(\frac{x}{5}) = 0 \)

\(x = \frac{3}{5} \)
Test point: \(f''(0) = \frac{20(0-3)}{(0-1)^2} = \frac{20(-\frac{3}{2})}{(-1)^2} = -\frac{30}{4} = -7.5 \)

\(f''(\frac{1}{2}) = \frac{20(\frac{1}{2}-\frac{3}{2})}{(\frac{1}{2}-1)^2} = \frac{20(\frac{1}{2})}{(-\frac{1}{2})^2} = +10 = + \)

\(f''(2) = \frac{20(2-\frac{3}{2})}{(2-1)^2} = \frac{20(\frac{1}{2})}{1} = +10 = + \)

\(\wedge \) to \(U \) means inflection point at \(x = \frac{3}{2} \)

\(f''(\frac{3}{2}) = 18(\frac{3}{2} - 3)(\frac{3}{2} - 1)^{\frac{3}{2}} \approx -28.5 \) inflection pt at \((\frac{3}{2}, -28.5) \)

Asymptotic behavior:
\[\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} 18 (x-3)(x-1)^{\frac{3}{2}} = \infty \]
\[\lim_{x \to 0} f(x) = \lim_{x \to \infty} 18 (x-3)(x-1)^{\frac{3}{2}} = -\infty \]

\(\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} 18 (x-3)(x-1)^{\frac{3}{2}} = \text{number} \)

1. continued

2. on next worksheet