
Winter 2020 Week 4 Math 32B Worksheet #4

Problem 1 Let D be the region in R3 bounded by the surfaces (described in cylindrical
coordinates) θ = z, θ = z + π/2, z = 0, z = π/2, and r = 1.

(a) Sketch the region D.

Solution. D is a “twisted quarter cylinder”: each horizontal cross section
is a quarter circle, and these quarter circles rotate from the first quadrant
(at the bottom of the cylinder) to the second quadrant (at the top of the
cylinder). Your sketch might look something like this:

Animations of D being built from rotating quarter circles can be found
here: https://imgur.com/a/N5bqz5L.

(b) Find the volume of D.

Solution. Note that the region D is very easy to describe in cylindrical
coordinates: the bounds on r are simply 0 ≤ r ≤ 1, and for a fixed value
of r, the cross section D of in z-θ space is a θ-simple parallelogram. Thus,
one way to compute the volume is with the following triple integral:∫ π/2

0

∫ z+π/2

z

∫ 1

0

r drdθdz =
1

2

∫ π/2

0

∫ z+π/2

z

dθdz =
π

4

∫ π/2

0

dz =
π2

8

Another way to arrive at this answer is to note that the volume of D
must be exactly one fourth the volume of the cylinder of radius 1 and
height π/2, since four copies of D fit together to make such a cylinder.
A cylinder of radius 1 and height π/2 has volume π2/2, so D has volume
π2/8.

Yet another way to arrive at this answer is to note that each horizontal
cross section of D is a quarter circle of area π/4, so the total volume of D
must be (π/4)(π/2) = π2/8.
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(c) Compute
∫∫∫
D xyz dV .

Solution. In cylindrical coordinates, the function becomes r2 cos(θ) sin(θ)z =
r2 sin(2θ)z/2. Thus, we need to evaluate

1

2

∫ π/2

0

∫ z+π/2

z

∫ 1

0

r3 sin(2θ)z drdθdz =
1

8

∫ π/2

0

z

(∫ z+π/2

z

sin(2θ) dθ

)
dz.

First,∫ z+π/2

z

sin(2θ) dθ = [− cos(2θ)/2]z+π/2z

=
1

2
(cos(2z)− cos(2z + π)) = cos(2z),

so the integral becomes

1

8

∫ π/2

0

z cos(2z) dz.

Letting u = z and v = sin(2z)/2, this is

1

8

∫ π/2

z=0

u dv =
1

8

(
[uv]

π/2
z=0 −

∫ π/2

z=0

v du

)
=

1

8

(
−1

2

∫ π/2

0

sin(2z) dz

)

=
−1

16

[
− cos(2z)

2

]π/2
0

=
−1

16

Problem 2 For each h ∈ [0, 1], let Rh be the region in R3 bounded by the surfaces z = 0,
z = h, and x2 + y2 + z2 = 1.

(a) Sketch the regions R1 and R 1
2
.

Solution. R1 is simply a half ball, and R1/2 is part of a half ball, cut off
at z = 1/2 as shown below:

(b) Let f(h) =
∫∫∫
Rh

dV . Explain why f ′(h) = π(1− h2).

Solution. Each horizontal cross-section of Rh is a circle, so intuitively
f ′(h) should be the area of the circle which is the top face of Rh. The
top face of Rh is defined by z = h and x2 + y2 ≤

√
1− z2, so the area of

this circle is π(1− h2).
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Alternatively, it’s easy to check that

f(h) =

∫ h

0

∫ 2π

0

∫ √1−z2

0

r drdθdz,

so by the fundamental theorem of calculus,

f ′(h) =

∫ 2π

0

∫ √1−h2

0

r drdθdz = π(1− h2).

(c) Find f(h) by evaluating the integral
∫∫∫
Rh

dV using cylindrical coordi-
nates.

Solution. Using cylindrical coordinates, we have∫∫∫
Rh

dV =

∫ h

0

∫ 2π

0

∫ √1−z2

0

r drdθdz =

∫ h

0

π(1−z2) dz = π(h−h3/3).

(d) Find f(h) by evaluating the integral
∫∫∫
Rh

dV using spherical coordi-
nates.

Solution. The tricky thing about this problem is that the region is not
ρ-simple. To get around this, instead of finding the volume of Rh directly,
we’ll find the volume of R1 (the half ball) and subtract the extra “cap” at
the top. Let R′h be the extra “cap”: it is bounded by x2 +y2 +z2 = 1 and
z = h. The good is news is that R′h is ρ-simple, so its volume is easier to
find with spherical coordinates: the boundary z = h can be expressed in
spherical coordinates as ρ cosφ = h, or in other words ρ = h secφ. Thus,
our bounds for ρ are h secφ ≤ ρ ≤ 1. R′h is symmetric around the z-axis,
so our bounds for θ are 0 ≤ θ ≤ 2π. Because R′h includes points on the
z-axis, the lower bound on φ is 0. The largest value of φ attained on R′h
occurs on the boundary of the bottom face, where z = h and ρ = 1. This
gives an upper bound on φ of arccos(h). Thus,∫∫∫

R′
h

dV =

∫ arccosh

0

∫ 2π

0

∫ 1

h secφ

ρ2 sinφ dρdθdφ

=
1

3

∫ arccosh

0

∫ 2π

0

(1− h3 sec3 φ) sinφ dθdφ

=
1

3

(∫ arccosh

0

∫ 2π

0

sinφ dθdφ− h3
∫ arccosh

0

∫ 2π

0

sec3 φ sinφ dθdφ

)

=
2π

3

(∫ arccosh

0

sinφ dφ− h3
∫ arccosh

0

sec2 φ tanφ dφ

)

=
2π

3

(
1− h− h3

∫ arccosh

0

sec2 φ tanφ dφ

)
.

We will now focus on the integral∫ arccosh

0

sec2 φ tanφdφ.
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Letting u = tanφ, we have du = sec2 φdφ, so the integrand above is udu.
When φ = 0, u = tan(0) = 0, and when φ = arccosh, u = tan(arccosh) =√

1−h2

h (see Figure 1 below). Thus, this integral is just

∫ √1−h2/h

0

u du =
1− h2

2h2
.

Therefore, the volume of R′h is

2π

3

(
1− h− h3 1− h2

2h2

)
=
π

3
(2− h+ h3).

R1 is half of a unit ball, so its volume is (4π/3)/2 = 2π/3. Thus, the
volume of Rh is

2π

3
− π

3
(2− h+ h3) =

π

3
(h− h3) ,

just like before.

(e) Evaluate ∫∫∫
R1/2

z√
x2 + y2 + z2

dV.

Solution. The function is easy to write in spherical coordinates: it be-
comes simply ρ cosφ/ρ = cosφ. As a result, it makes sense to do this
integral in spherical coordinates. Just like in Problem (2.d), we’ll com-
pute this by integrating over R1 and subtracting the integral over the
“extra cap”. First, the integral over the entire half ball R1 is∫ π/2

0

∫ 2π

0

∫ 1

0

ρ2 sinφ cosφ dρdθdφ =
π

3
.

Next, the integral over the extra cap is

∫ arccos 1
2

0

∫ 2π

0

∫ 1

secφ/2

ρ2 sinφ cosφ dρdθdφ

= 2π

∫ π/3

0

∫ 1

secφ/2

ρ2 sinφ cosφ dρdφ

=
2π

3

∫ π/3

0

(
1− sec3 φ

8

)
sinφ cosφ dφ

=
2π

3

(∫ π/3

0

sinφ cosφ dφ− 1

8

∫ π/3

0

sinφ

cos2 φ
dφ

)
.

In the first integral, setting u = sinφ gives du = cosφdφ, thus reducing

the integral to
∫√3/2

0
u du. In the second integral, setting u = − cosφ
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gives du = sinφdφ, thereby reducing the integral to
∫ −1/2
−1

du
u2 =

∫ 1

1/2
du
u2 .

In total, we have

2π

3

(∫ √3/2

0

u du− 1

8

∫ 1

1/2

du

u2

)
=

2π

3

(
3

8
− 1

8

)
=
π

6
.

Thus, our final answer is
π

3
− π

6
=

π

6

Problem 3 Let E be the region defined by x ≥ 0, y ≤ x, z ≥ 0, x2 + y2 ≤ 4, and xz ≤ y.
Evaluate ∫∫∫

E
(z − x2 − y2) dV.

Solution. This region is fairly easy to describe in cylindrical coordinates: the
bounds are 0 ≤ θ ≤ π/4, 0 ≤ r ≤ 2, and 0 ≤ z ≤ tan θ. The function is also
easy to write in cylindrical coordinates: it’s just z − r2. Thus, it makes sense
to do this integral in cylindrical coordinates. We get∫ 2

0

∫ π/4

0

∫ tan θ

0

(z − r2)r dzdθdr =

∫ 2

0

∫ π/4

0

(
r tan2 θ

2
− r3 tan θ

)
dθdr.

First, recalling that tan2 θ = sec2 θ − 1, we get∫ π/4

0

tan2 θ dθ =

∫ π/4

0

sec2 θ dθ − π

4
= tan(π/4)− tan(0)− π

4
= 1− π

4
.

This tells us that∫ 2

0

r tan2 θ

2
dθdr =

4− π
8

∫ 2

0

r dr = 1− π

4
.

Next, letting u = cos θ, we get du = − sin θdθ, so tan θdθ = −du
u . Now

∫ 2

0

∫ π/4

0

r3 tan θ dθdr = 4

∫ 1/
√
2

1

−du

u
= 4

∫ 1

1/
√
2

du

u

= 4(ln 1− ln 2−1/2) = 2 ln 2.

Thus, our final answer is

1− π

4
− 2 ln 2

Problem 4 Let E be the region in the first octant bounded by x2 + y2 + z2 = 4.

(a) Evaluate ∫∫∫
E
(x− y + 3z) dV.
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Solution. Since E is symmetric about the plane x = y, the integrals∫∫∫
E x dV and

∫∫∫
E y dV must be equal. Thus, the integral in question

is equal to 3
∫∫∫
E z dV . We will perform this integral in spherical coor-

dinates, because both the domain of integration and the integrand are
reasonably easy to describe in spherical coordinates. We have

∫∫∫
E
z dV =

∫ π/2

0

∫ 1

0

∫ π/2

0

(ρ cosφ)(ρ2 sinφ) dφdρdθ

=

∫ π/2

0

∫ 1

0

ρ3

(∫ π/2

0

cosφ sinφ dφ

)
dρdθ

=
1

2

∫ π/2

0

∫ 1

0

ρ3 dρdθ =
1

8

∫ π/2

0

dθ =
π

16
.

Thus, our final answer is

3π

16

(b) Evaluate ∫∫∫
E
(x2 + y2 − z2) dV.

Solution. Note that
∫∫∫
E(x

2 + y2 + z2) dV is very easy to compute in
spherical coordinates: it’s simply∫ π/2

0

∫ 1

0

∫ π/2

0

ρ4 sinφ dφdρdθ =
π

10
.

The integral we want to find can be computed by subtracting
∫∫∫
E 2z2 dV

from this quantity, so we just need to find
∫∫∫
E z

2 dV . We compute this
in spherical coordinates, as follows:

∫∫∫
E
z2 dV =

∫ π/2

0

∫ 1

0

∫ π/2

0

ρ4 cos2 φ sinφ dφdρdθ

=
π

10

∫ π/2

0

cos2 φ sinφ dφ =
−π
10

∫ 0

1

u2 du =
π

30
,

where is the u-substitution performed was u = cosφ, du = − sinφdφ.
Thus, our final answer is

π

10
− 2

π

30
=

π

30

(c) Griff makes a piece of Jell-O R© whose shape is E . Because Griff isn’t very
good at cooking, the density of her Jello-O R© is very uneven: it is given

by the function δ(x, y, z) = x2+y2

x2+y2+z2 . Find the mass of Griff’s Jell-O R©.

Page 6



Winter 2020 Week 4 Math 32B Worksheet #4

Solution. The mass of the Jell-O R© is simply the integral of the density.
The density function is most easily written in spherical coordinates: it is
simply ρ2 sin2 φ/ρ2 = sin2 φ. Thus, we evaluate∫ π/2

0

∫ 1

0

∫ π/2

0

ρ2 sin3 φ dφdρdθ =
π

6

∫ π/2

0

sin3 φ dφ.

We now use integration by parts. Letting u = sin2 φ and v = − cosφ, we
get du = sinφ cosφdφ and dv = sinφdφ. Our integral then becomes

π

6

∫ π/2

φ=0

u dv =
π

6

(
[− sin2 φ cosφ]

π/2
φ=0 +

∫ π/2

φ=0

cos2 φ sinφ dφ

)
.

We already found in Problem (4.b) that
∫ π/2
φ=0

cos2 φ sinφ dφ = 1/3, so our
final answer is

π

18

Problem 5 Let S be the region bounded by x = −1, x = 1, y + z = 0, y − z = 0, and
y2 + z2 = 2. Find the volume of S (Hint: sketch what S looks like and think
about which coordinate system to use).

Solution. S is a quarter of a cylinder of height 2 and radius
√

2, as shown:

Therefore, its volume is π. If you’d like to compute the volume explicitly via
an integral, it’s easiest to use modified cylindrical coordinates, where r and θ
describe a position in the yz-plane, and the x-coordinate plays the role of the
traditional z-coordinate in standard cylindrical coordinates. Then the bounds
become 1 ≤ x ≤ −1, 0 ≤ r ≤

√
2, and −π/4 ≤ θ ≤ π/4.
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x

h

√
1− h2

1

Consider the right triangle above. Since cosx = h, x = arccos(h). Thus,

tan(arccos(h)) = tan(x) =

√
1− h2
h

Figure 1: Computing tan(arccos(h)).
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